Methods
Method new()
Create model fit object
Arguments
data
Data used to create the fit.
stan_data
The used 'Stan' data list.
model
A MultistateModel
draws
A named list of rvars.
info
Fit info.
Method is_pk_only()
Is this a PK-only fit?
Usage
MultistateModelFit$is_pk_only()
Method assert_hazard_fit()
Require that fit is not PK-only
Usage
MultistateModelFit$assert_hazard_fit()
Method mean_fit()
Create a reduced version with only a single draw, corresponding
to the mean of original draws.
Usage
MultistateModelFit$mean_fit()
Returns
A new MultistateModelFit object.
Method is_point_estimate()
Check if fit is a point estimate
Usage
MultistateModelFit$is_point_estimate()
Method get_data()
Extract Stan data list
Usage
MultistateModelFit$get_data()
Method draws_names()
Names of the draws list
Usage
MultistateModelFit$draws_names()
Method get_draws()
Extract draws as rvars
Usage
MultistateModelFit$get_draws(name = NULL)
Method get_draws_of()
Draws in a raw array with same shape as Stan variable
Usage
MultistateModelFit$get_draws_of(name)
Arguments
name
Param/quantity name of x
Returns
Array with dimension c(ndraws(x), dim(x))
Print the object
Usage
MultistateModelFit$print()
Method plot_basisfun()
Plot used basis functions (grid)
Usage
MultistateModelFit$plot_basisfun()
Method simulate_pk()
Simulate PK dynamics using fitted params.
Usage
MultistateModelFit$simulate_pk(
oos = FALSE,
data = NULL,
L = 100,
timescale = 24,
n_prev = 3
)
Arguments
oos
Out-of-sample subjects?
data
Data for which to predict the concentration. If NULL,
training data is used.
L
number of grid points for each subject
timescale
scale of time
n_prev
number of previous doses to show fit for
Method plot_pk()
Plot PK fit.
Usage
MultistateModelFit$plot_pk(
max_num_subjects = 12,
oos = FALSE,
data = NULL,
L = 100,
timescale = 24,
n_prev = 3,
ci_alpha = 0.9
)
Arguments
max_num_subjects
Max number of subjects to show.
oos
Out-of-sample subjects?
data
Data for which to predict the concentration. If NULL,
training data is used.
L
number of grid points for each subject
timescale
scale of time
n_prev
number of previous doses to show fit for
ci_alpha
Width of central credible interval.
Method plot_h0()
Plot baseline hazard distribution
Usage
MultistateModelFit$plot_h0(t = NULL, ci_alpha = 0.95)
Arguments
t
times where to evaluate the baseline hazards
ci_alpha
width of credible interval
Method h0_dist()
Baseline hazard distribution
Usage
MultistateModelFit$h0_dist(t = NULL, ci_alpha = 0.95)
Arguments
t
times where to evaluate the baseline hazards
ci_alpha
width of credible interval
Method covariate_effects()
Extract covariate effects
Currently not implemented for models that have a PK submodel.
Usage
MultistateModelFit$covariate_effects()
Returns
A data frame which has columns
covariate Name of the covariate
beta The covariate effect parameter estimate (rvar).
NOTE: this is the regression coefficient for normalized covariates.
target_state Name of the target state. The corresponding
beta is the covariate effect on all transitions that end in this
target state.
Method log_z_pars()
Full names of parameters that start with log_z_.
Usage
MultistateModelFit$log_z_pars()
Method num_draws()
Get number of draws
Usage
MultistateModelFit$num_draws()
Method clone()
The objects of this class are cloneable with this method.
Usage
MultistateModelFit$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.